On the first Zassenhaus conjecture for integral group rings

نویسندگان

  • V. BOVDI
  • C. HÖFERT
  • W. KIMMERLE
چکیده

It was conjectured by H. Zassenhaus that a torsion unit of an integral group ring of a finite group is conjugate to a group element within the rational group algebra. The object of this note is the computational aspect of a method developed by I. S. Luthar and I. B. S. Passi which sometimes permits an answer to this conjecture. We illustrate the method on certain explicit examples. We prove with additional arguments that the conjecture is valid for any 3-dimensional crystallographic point group. Finally we apply the method to generic character tables and establish a p-variation of the conjecture for the simple groups P SL(2, p).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zassenhaus Conjecture for A6

For the alternating group A6 of degree 6, Zassenhaus’ conjecture about rational conjugacy of torsion units in integral group rings is confirmed.

متن کامل

Torsion units in integral group rings of Janko simple groups

Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of integral group rings of Janko simple groups. As a consequence, for the Janko groups J1, J2 and J3 we confirm Kimmerle’s conjecture on prime graphs.

متن کامل

Kimmerle Conjecture for the Held and O’nan Sporadic Simple Groups

Using the Luthar–Passi method, we investigate the Zassenhaus and Kimmerle conjectures for normalized unit groups of integral group rings of the Held and O’Nan sporadic simple groups. We confirm the Kimmerle conjecture for the Held simple group and also derive for both groups some extra information relevant to the classical Zassenhaus conjecture. Let U(ZG) be the unit group of the integral group...

متن کامل

Another Counterexample to a Conjecture of Zassenhaus

A metabelian group G of order 1440 is constructed which provides a counterexample to a conjecture of Zassenhaus on automorphisms of integral group rings. The group is constructed in the spirit of [8]. An augmented automorphism of ZG which has no Zassenhaus factorization is given explicitly (this was already done in [7] for a group of order 6720), but this time only a few distinguished group rin...

متن کامل

Kimmerle’s Conjecture for Integral Group Rings of Some Alternating Groups

Using the Luthar–Passi method and results of Hertweck, we study the long-standing conjecture of Zassenhaus for integral group rings of alternating groups An, n ≤ 8. As a consequence of our results, we confirm the Kimmerle’s conjecture about prime graphs for those groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005